Segment Tree-1
Segment Tree Basic
Node Divide With Segment Tree
Node Numbering (Segment Tree)
// build (node, begin, end)
build (1, 1, N)
{
L = 2xN, R = (2xN) + 1 // Node Number Calculate
mid = (begin + end) / 2
left = (L, begin, mid)
left = (R, mid+1, end)
}
Summation (Array)(Segment Tree)
Update Element (Segment Tree)
Query solve (Summation)
inner (when found the Node then return it)
outer (when Not found the Node)
Intersect --> between two ways (left or right)
code
#include "bits/stdc++.h"
#define ll long long
using namespace std;
const ll N = 1e5+5;
const int maxN = 1e5 + 9;
long long a[maxN], t[4 * maxN];
//BUILD
void build(int n, int b, int e) {
if (b == e) {
t[n] = a[b];
return;
}
int mid = (b + e) / 2, l = 2 * n, r = (2 * n) + 1;
build(l, b, mid);
build(r, mid + 1, e);
t[n] = t[l] + t[r];
}
//UPDATE
void update(int n, int b, int e, int i, int v) {
if (i<b || i>e) {
return;
}
if (b == e) {
t[n] = v;
return;
}
int mid = (b + e) / 2, l = 2 * n, r = (2 * n) + 1;
update(l, b, mid, i, v);
update(r, mid + 1, e, i, v);
t[n] = t[l] + t[r];
}
// QUERY
long long query(int n, int b, int e, int i, int j) {
if (e < i || j < b) {
return 0;
}
if (b >= i && e <= j) {
return t[n];
}
int mid = (b + e) / 2, l = 2 * n, r = (2 * n) + 1;
return query(l, b, mid, i, j) + query(r, mid + 1, e, i, j);
}
// MAIN FUNCTION
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int n, m;
cin >> n >> m;
for (int i = 1;i <= n;i++) {
cin >> a[i];
}
build(1, 1, n);
while (m--) {
int t;
cin >> t;
if (t == 1) {
int idx, v;
cin >> idx >> v;
idx++;
update(1, 1, n, idx, v);
}
else {
int l, r;
cin >> l >> r;
l++;
long long ans = query(1, 1, n, l, r);
cout << ans << '\n';
}
}
return 0;
}